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Motivation 
 As economist Thomas Friedman once stated, “I firmly believe that the next great 

breakthrough in biosciences could come from a 15-year-old who downloads the human 

genome in Egypt”. The sequencing of the human genome in 2003 has transformed the world of 

the biosciences and blurred the lines between experimentalists and computational biologists. 

As we experience this transition, it is essential to adapt our training and resources.  

 From everyday molecular biology experiments to more large-scale, high-throughput 

datasets, computation has become an everyday aspect of biology. However, the current state 

of computational tools is limited. A more user-friendly and centralized computational toolset 

would empower experimentalists and computational biologists alike.  

Introduction 
 The human genome is comprised of three billion “base pairs” or building blocks. Each 

position in the genome has one of four types of building blocks. Together, base pairs make up 

individual genes. Many genes and regulatory regions together create a chromosome. Every cell 

in our body has 23 pairs of chromosomes, one from our mother and one from our father. 

 The primary functional components of cells are proteins or enzymes. Different cell types 

express different subsets of genes. Expressed genes are transcribed from DNA to RNA. RNA 

fragments are strings made of building blocks (with four types of building blocks). The RNA is 

then translated into protein, another string made of 20 types of building blocks.  

 As is apparent from the above description, molecular biology is essentially a collection 

of carefully regulated string operations. The human body computes a countless number of such 

operations every second. Biologists must also perform such computations to enable their 

research. Below I describe my attempt at creating a user-friendly genomics package in the Julia 

language.  

Problem Definition 
 The functions required in a genomics setting can be placed in three categories: daily use, 

intermediate applications and large-scale analysis. Daily use functions are primarily required for 

cloning (DNA manipulations) or to convert reference sequences from DNA to RNA to protein 

(and in the reverse direction). Intermediate applications are also used for the aforementioned 

purposes, however require more extensive computations based on biophysical properties. 

Traditionally, experiments are designed to study a specific pathway, specific disease or specific 

condition. Over the last decade, it has become possible to more holistically survey all genes, all 

pathways, etc. Recently developed techniques create large datasets which must be processed 

and mined computationally. Such applications require more advanced computing. Julia serves 

as an ideal language in which to create a genomics package spanning these different levels of 

computational expertise. It is more user friendly than other options, yet can be used to 
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parallelize some of the more advanced functions. Currently available software is discussed 

below, for comparison. 

Related Software 
A. Every-day Tasks 

Day-to-day manipulations of DNA and RNA are essentially a collection of string 

operations performed by various enzymes (proteins). In order to harness the 

power of such naturally-occurring operations, we must be able to predict the 

outcome of various enzymatic reactions.  

The operations needed to convert between DNA, RNA and protein are relatively 

simply mappings between dictionaries. However, the operations can become 

somewhat more complex when applied to longer and longer sequences (or 

collections of sequences) on the order of the genome (3e9 base pairs). 

Currently, molecular biologists turn to a collection of disjointed websites to 

perform such simple operations. Often, such websites are maintained by 

companies which sell the enzymes needed to perform such reactions in the 

laboratory setting. As such, there is little motivation to have an efficiently 

written or maintained back-end.  

 

B. Intermediate Tasks 
Certain stages of experimental design require a more nuanced understanding of 

the biophysical properties of DNA, RNA or proteins. The theory behind such 

biophysical properties has been elucidated over the last few decades.  

Matlab provides several functions that can used to predict such biophysical 

properties. However, the algorithms they apply are not optimal when applied to 

experimental settings. Additionally, most biologists are not willing to fund or 

install Matlab to perform such tasks. Websites hosted by individual laboratories 

offer an alternative option. However, such websites are not maintained properly 

and are not centrally accessible. 

 

C. Advanced Tasks 
The advent of high-throughput technology has generated terabytes of data over 

the last decade or so. While generating such datasets is relatively 

straightforward, the analysis and interpretation of such datasets requires a 

substantial amount of computational resources and computational savvy. 

Experimental biology labs that rely heavily on such datasets will often hire a 

computational scientist for the sole purpose of parsing such data. Alternatively, 
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the analysis will be performed in an ad-hoc manner, leaving little hope of 

reproducibility. 

The R Bioconductor package is the current state-of-the-art resource for analyzing 

high-throughput datasets. It has some very well-written packages for 

interpreting typical datasets such as genome sequencing, exome sequencing, 

ChIP-Seq, Microarray data, etc. However, since these packages are largely open 

source, the number of options and lack of documentation can be overwhelming 

for a new user.  

Molecular biologists could greatly benefit from a more centralized 

computational toolset which spans the realm of daily-use through advanced 

computations. 

 

Library Description 
A. Daily-Use Library 

1. Reverse Complement 
DNA polymers are sequences of nucleotides. The order of the sequence 

determines the structure and functionality of the resulting protein. DNA 

is double-stranded, with each strand having directionality. By the nature 

of base-pairing, information from one strand can be used to determine 

the sequence and directionality of the opposite strand (referred to as the 

reverse complement).  

I have implemented a Julia function which determines the reverse 

complement of any given sequence of arbitrary length. Generally, such 

operations are only performed on relatively short strings (few thousand 

base pairs at most). However, a parallel version of this function could be 

used for larger scale applications, such as genome-scale reverse 

complementation. 

2. Translator 
RNA is converted to protein in three base-pairs units. In order to predict a 

protein sequence that will result from a RNA sequence, you must first 

determine the “start site” specified by a particular triplicate. From there, 

three base pairs units are converted into protein sequences until 

reaching a “stop site”. Proteins are sequences of amino acids which are 

mappings from triplicate sequences of RNA. I have implemented a Julia 

function which translates an RNA or DNA sequence into the 

corresponding amino acid or protein sequence.  
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B. Intermediate Toolbox 

1. Primer Melting Temperature Calculator 
A typical experiment in molecular biology requires the amplification of a 

stretch of DNA from the genome or a plasmid. Amplification requires the 

binding of short pieces of DNA flanking the region of interest. For 

amplification to occur, we must design fragments or “primers” with a 

specific melting temperature and then adjust the experimental protocol 

to match such conditions. The melting temperature of DNA strands can 

be predicted based on the subsequences and sequence context. 

I have implemented a well-established algorithm which uses the relative 

representation of G/C nucleotides (building blocks) and A/T nucleotides 

to predict the melting temperature of a primer or longer DNA sequence. 

2. Restriction Enzyme Cutter 
Restriction enzymes are natural-occurring proteins which bind to and cut 

specific sequences of DNA. Such enzymes recognize 8-12 base pair 

sequences and can cut DNA strands symmetrically or asymmetrically. 

Hundreds of such enzymes exist, corresponding to different recognition 

sequences. We can harness the power of such enzymes to perform “cut 

and paste”-like operations on DNA. This empowers us to clone different 

regions of the genome and study their function. 

I use a list of such enzymes and their corresponding recognition 

sequences to predict all cutting sites for a piece of DNA. The user can 

input a gene or locus they are trying to clone and the function outputs 

the enzymes which cut the sequence.  

Currently, New England Biosciences provides an analogous tool. 

However, due to high user-load, it is often very slow or does not load 

properly. This Julia function provides a faster alternative. 

 

3. Protein Atomic Composition 

While amino acid composition is useful to understand a protein’s 

functionality, a higher resolution understanding is needed to discern 

biochemical and biophysical properties of a structure. For example, the 

atomic structure of a protein will determine the net charge at a given pH. 

The number of disulfide bridges (a type of secondary structure) in a 

protein will be determined by the number of sulfur atoms present. The 

molecular weight, isoelectric point, etc. are all based on atomic 

composition. Therefore, I have created a function that takes a protein 

sequence as an input and outputs the predicted atomic structure. An 
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added functionality would be to include the pH and environmental 

dependence of such features. This option will be included in future 

versions of the library. 

C. Advanced Toolbox 

1. Motif Finder 
DNA and RNA-binding proteins have a great specificity for binding to 

subsequences. Generally, such binding exists at regulatory regions (ex. 

upstream of a gene). In this scenario, a gene may turn on or off if such a 

sequence exists upstream of the gene’s start site. While such a paradigm 

has been well-established, the specific sequences that dictate such 

binding are unknown. In order to discern such motifs, experimentalists 

can define the regions to which a protein is bound and then look for 

motif enrichment to determine the sequences the protein recognizes. 

I have implemented a motif finder in Julia. The basic principle relies on 

finding enrichment of subsequences in one collection of sequences 

compared to another collection of “background” sequences. This 

approach was first proposed in 1998 and works especially well for smaller 

genomes such as the yeast genome. 

I first create a list of sequences present in intergenic (or less functional 

areas). This can then be used to create a matrix in which each 

subsequence is stored as a base 4 representation. The relative 

frequencies of all subsequences in this “intergenic list” are used to create 

a background distribution of subsequences. It is plausible that certain 

subsequences exist at a higher or lower frequency across the genome. 

We can use this background distribution to normalize for such 

differences. 

The algorithm then creates a similar matrix for a sequence list that is 

thought to have an enrichment of a particular binding motif (based on 

experimental design). The test and background distribution are compared 

using a binomial distribution and the user receives an output of enriched 

motifs. Currently, this function is designed for the yeast genome. 

However, extending this to other organisms is simply a matter of creating 

files with different intergenic genome sequences corresponding to the 

given organism of interest. 

2. Sequence Alignment 

 DNA sequences can duplicate over time and over the diversification of 

different species through evolution. It is often of interest to determine 

which genes are related and/or emerge from the same evolutionary 
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ancestor. Such information can be used to predict how close different 

species are in evolutionary time. It can also allow us to study genes or 

proteins of interest in a model organism and then map the results back to 

higher organisms. 

Sequence alignment has been a problem in molecular and evolutionary 

biology for many decades. As such, various algorithms have been 

developed to optimize both local and global alignment of pairs and 

groups of sequences. 

In the Julia genomics package, I implemented a variation of the 

Needleman-Wunsch Algorithm. This dynamic programming algorithm 

involves a sequential alignment of larger and larger subsequences, until 

the entirety of both sequences has been aligned (Fig 1). 

First, a penalty is assigned for mismatches and gaps in sequences. This 

can be further developed to have context-specific penalties. A matrix is 

constructed with each of the two sequences on different axes. The first 

column and row is filled with gap penalties. Every remaining cell is filled 

by considering the alignment of the previous step and then choosing the 

option (gap in sequence A, gap in sequence B, match or mismatch), which 

gives the lowest overall penalty. This matrix is iteratively filled. The most 

optimal path is reconstructed from the bottom right corner of the matrix 

by tracing the path that leads to the ultimate penalty score. This 

algorithm is currently implemented in serial, however a parallel version 

would be useful for multiple sequence alignment. Additional algorithms 

should be implemented for different types of alignments (ex. Extremely 

divergent or similar). 

Fig 1. Schematic of Needleman-Wunsch Algorithm. Taken from etutorials.org 
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3. Co-expression Analysis 
Microarrays can be used to profile gene expression in a given tissue or 

sample type. Microarray datasets are now available for a plethora of 

different experimental conditions. Such data can be used to determine 

novel genes in a given pathway, organelle, etc. Genes that are 

functionally related tend to be co-expressed across different 

experimental conditions.  

The Julia genomics package contains a co-expression analysis function. 

For each gene, a ranked list is created of genes which are co-expressed 

through different conditions. A gene list is created corresponding to the 

biological function of interest. The intersection of top-correlating genes 

and the comparison gene list is determined for each gene. The genes 

with the largest number of neighbors, or genes in the intersection are 

likely to be related to the original function being probed. This can be used 

as the basis for experimental confirmation of a novel gene’s function. 

Such approaches have previously been used to determine organelle 

proteomes, functional pathways, etc. 

Future Work 
 The current genomics library provides examples of computational functions that are 

needed for a wide-range of applications of different experimental and computational scales. 

The advanced toolbox can be expanded to include a larger variety of data analyses. For 

example, it would be useful to have functions to analyze mass spectrometry data, construct 

evolutionary trees, create gene expression networks/graphs, etc. Furthermore, the functions in 

the daily-use and intermediate toolboxes can be optimized by trying several different 

algorithms and testing them on larger sequences. 

 In order to make this even more user-friendly, a user interface could be written to allow 

ease of access. 

Conclusion 
 The biological sciences are generating an ever-expanding need for computational tools 

and scientists. As this transformation is in its infancy, solutions to such problems are rather ad-

hoc and disorganized. Currently, biologists use an amalgam of websites and software to 

perform computations related to their work. This leads to a lack of standardization and 

efficiency. This Julia Genomics Package is an attempt to provide a universal, easy-to-use toolset 

for computational (and increasingly for experimental) biology. Further expansion and 
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refinement of this library has the potential to attract many users from the biological and 

genomic sciences. 
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