

Julia Genomics Package

Final Project 18.337

Isha Jain

Julia Genomics Package | Applied Parallel Computing (18.337) | Isha Jain

2

Table of Contents
I. Introduction and Motivation………………………………………………p3

II. Problem Definition……………………………………………………………..p3

III. Related Software………………………………………………………………..p4

IV. Library Description…………………………………………..………………..p5
A. Daily-Use Functions

B. Intermediate Use Functions

C. Advanced Functions

V. Future Work…………………………………………………………………….p9

VI. Conclusion……………………………………………………………………….p9

VII. Acknowledgements………………………………………………………....p10

Julia Genomics Package | Applied Parallel Computing (18.337) | Isha Jain

3

Motivation
 As economist Thomas Friedman once stated, “I firmly believe that the next great

breakthrough in biosciences could come from a 15-year-old who downloads the human

genome in Egypt”. The sequencing of the human genome in 2003 has transformed the world of

the biosciences and blurred the lines between experimentalists and computational biologists.

As we experience this transition, it is essential to adapt our training and resources.

 From everyday molecular biology experiments to more large-scale, high-throughput

datasets, computation has become an everyday aspect of biology. However, the current state

of computational tools is limited. A more user-friendly and centralized computational toolset

would empower experimentalists and computational biologists alike.

Introduction
 The human genome is comprised of three billion “base pairs” or building blocks. Each

position in the genome has one of four types of building blocks. Together, base pairs make up

individual genes. Many genes and regulatory regions together create a chromosome. Every cell

in our body has 23 pairs of chromosomes, one from our mother and one from our father.

 The primary functional components of cells are proteins or enzymes. Different cell types

express different subsets of genes. Expressed genes are transcribed from DNA to RNA. RNA

fragments are strings made of building blocks (with four types of building blocks). The RNA is

then translated into protein, another string made of 20 types of building blocks.

 As is apparent from the above description, molecular biology is essentially a collection

of carefully regulated string operations. The human body computes a countless number of such

operations every second. Biologists must also perform such computations to enable their

research. Below I describe my attempt at creating a user-friendly genomics package in the Julia

language.

Problem Definition
 The functions required in a genomics setting can be placed in three categories: daily use,

intermediate applications and large-scale analysis. Daily use functions are primarily required for

cloning (DNA manipulations) or to convert reference sequences from DNA to RNA to protein

(and in the reverse direction). Intermediate applications are also used for the aforementioned

purposes, however require more extensive computations based on biophysical properties.

Traditionally, experiments are designed to study a specific pathway, specific disease or specific

condition. Over the last decade, it has become possible to more holistically survey all genes, all

pathways, etc. Recently developed techniques create large datasets which must be processed

and mined computationally. Such applications require more advanced computing. Julia serves

as an ideal language in which to create a genomics package spanning these different levels of

computational expertise. It is more user friendly than other options, yet can be used to

Julia Genomics Package | Applied Parallel Computing (18.337) | Isha Jain

4

parallelize some of the more advanced functions. Currently available software is discussed

below, for comparison.

Related Software
A. Every-day Tasks

Day-to-day manipulations of DNA and RNA are essentially a collection of string

operations performed by various enzymes (proteins). In order to harness the

power of such naturally-occurring operations, we must be able to predict the

outcome of various enzymatic reactions.

The operations needed to convert between DNA, RNA and protein are relatively

simply mappings between dictionaries. However, the operations can become

somewhat more complex when applied to longer and longer sequences (or

collections of sequences) on the order of the genome (3e9 base pairs).

Currently, molecular biologists turn to a collection of disjointed websites to

perform such simple operations. Often, such websites are maintained by

companies which sell the enzymes needed to perform such reactions in the

laboratory setting. As such, there is little motivation to have an efficiently

written or maintained back-end.

B. Intermediate Tasks
Certain stages of experimental design require a more nuanced understanding of

the biophysical properties of DNA, RNA or proteins. The theory behind such

biophysical properties has been elucidated over the last few decades.

Matlab provides several functions that can used to predict such biophysical

properties. However, the algorithms they apply are not optimal when applied to

experimental settings. Additionally, most biologists are not willing to fund or

install Matlab to perform such tasks. Websites hosted by individual laboratories

offer an alternative option. However, such websites are not maintained properly

and are not centrally accessible.

C. Advanced Tasks
The advent of high-throughput technology has generated terabytes of data over

the last decade or so. While generating such datasets is relatively

straightforward, the analysis and interpretation of such datasets requires a

substantial amount of computational resources and computational savvy.

Experimental biology labs that rely heavily on such datasets will often hire a

computational scientist for the sole purpose of parsing such data. Alternatively,

Julia Genomics Package | Applied Parallel Computing (18.337) | Isha Jain

5

the analysis will be performed in an ad-hoc manner, leaving little hope of

reproducibility.

The R Bioconductor package is the current state-of-the-art resource for analyzing

high-throughput datasets. It has some very well-written packages for

interpreting typical datasets such as genome sequencing, exome sequencing,

ChIP-Seq, Microarray data, etc. However, since these packages are largely open

source, the number of options and lack of documentation can be overwhelming

for a new user.

Molecular biologists could greatly benefit from a more centralized

computational toolset which spans the realm of daily-use through advanced

computations.

Library Description
A. Daily-Use Library

1. Reverse Complement
DNA polymers are sequences of nucleotides. The order of the sequence

determines the structure and functionality of the resulting protein. DNA

is double-stranded, with each strand having directionality. By the nature

of base-pairing, information from one strand can be used to determine

the sequence and directionality of the opposite strand (referred to as the

reverse complement).

I have implemented a Julia function which determines the reverse

complement of any given sequence of arbitrary length. Generally, such

operations are only performed on relatively short strings (few thousand

base pairs at most). However, a parallel version of this function could be

used for larger scale applications, such as genome-scale reverse

complementation.

2. Translator
RNA is converted to protein in three base-pairs units. In order to predict a

protein sequence that will result from a RNA sequence, you must first

determine the “start site” specified by a particular triplicate. From there,

three base pairs units are converted into protein sequences until

reaching a “stop site”. Proteins are sequences of amino acids which are

mappings from triplicate sequences of RNA. I have implemented a Julia

function which translates an RNA or DNA sequence into the

corresponding amino acid or protein sequence.

Julia Genomics Package | Applied Parallel Computing (18.337) | Isha Jain

6

B. Intermediate Toolbox

1. Primer Melting Temperature Calculator
A typical experiment in molecular biology requires the amplification of a

stretch of DNA from the genome or a plasmid. Amplification requires the

binding of short pieces of DNA flanking the region of interest. For

amplification to occur, we must design fragments or “primers” with a

specific melting temperature and then adjust the experimental protocol

to match such conditions. The melting temperature of DNA strands can

be predicted based on the subsequences and sequence context.

I have implemented a well-established algorithm which uses the relative

representation of G/C nucleotides (building blocks) and A/T nucleotides

to predict the melting temperature of a primer or longer DNA sequence.

2. Restriction Enzyme Cutter
Restriction enzymes are natural-occurring proteins which bind to and cut

specific sequences of DNA. Such enzymes recognize 8-12 base pair

sequences and can cut DNA strands symmetrically or asymmetrically.

Hundreds of such enzymes exist, corresponding to different recognition

sequences. We can harness the power of such enzymes to perform “cut

and paste”-like operations on DNA. This empowers us to clone different

regions of the genome and study their function.

I use a list of such enzymes and their corresponding recognition

sequences to predict all cutting sites for a piece of DNA. The user can

input a gene or locus they are trying to clone and the function outputs

the enzymes which cut the sequence.

Currently, New England Biosciences provides an analogous tool.

However, due to high user-load, it is often very slow or does not load

properly. This Julia function provides a faster alternative.

3. Protein Atomic Composition

While amino acid composition is useful to understand a protein’s

functionality, a higher resolution understanding is needed to discern

biochemical and biophysical properties of a structure. For example, the

atomic structure of a protein will determine the net charge at a given pH.

The number of disulfide bridges (a type of secondary structure) in a

protein will be determined by the number of sulfur atoms present. The

molecular weight, isoelectric point, etc. are all based on atomic

composition. Therefore, I have created a function that takes a protein

sequence as an input and outputs the predicted atomic structure. An

Julia Genomics Package | Applied Parallel Computing (18.337) | Isha Jain

7

added functionality would be to include the pH and environmental

dependence of such features. This option will be included in future

versions of the library.

C. Advanced Toolbox

1. Motif Finder
DNA and RNA-binding proteins have a great specificity for binding to

subsequences. Generally, such binding exists at regulatory regions (ex.

upstream of a gene). In this scenario, a gene may turn on or off if such a

sequence exists upstream of the gene’s start site. While such a paradigm

has been well-established, the specific sequences that dictate such

binding are unknown. In order to discern such motifs, experimentalists

can define the regions to which a protein is bound and then look for

motif enrichment to determine the sequences the protein recognizes.

I have implemented a motif finder in Julia. The basic principle relies on

finding enrichment of subsequences in one collection of sequences

compared to another collection of “background” sequences. This

approach was first proposed in 1998 and works especially well for smaller

genomes such as the yeast genome.

I first create a list of sequences present in intergenic (or less functional

areas). This can then be used to create a matrix in which each

subsequence is stored as a base 4 representation. The relative

frequencies of all subsequences in this “intergenic list” are used to create

a background distribution of subsequences. It is plausible that certain

subsequences exist at a higher or lower frequency across the genome.

We can use this background distribution to normalize for such

differences.

The algorithm then creates a similar matrix for a sequence list that is

thought to have an enrichment of a particular binding motif (based on

experimental design). The test and background distribution are compared

using a binomial distribution and the user receives an output of enriched

motifs. Currently, this function is designed for the yeast genome.

However, extending this to other organisms is simply a matter of creating

files with different intergenic genome sequences corresponding to the

given organism of interest.

2. Sequence Alignment

 DNA sequences can duplicate over time and over the diversification of

different species through evolution. It is often of interest to determine

which genes are related and/or emerge from the same evolutionary

Julia Genomics Package | Applied Parallel Computing (18.337) | Isha Jain

8

ancestor. Such information can be used to predict how close different

species are in evolutionary time. It can also allow us to study genes or

proteins of interest in a model organism and then map the results back to

higher organisms.

Sequence alignment has been a problem in molecular and evolutionary

biology for many decades. As such, various algorithms have been

developed to optimize both local and global alignment of pairs and

groups of sequences.

In the Julia genomics package, I implemented a variation of the

Needleman-Wunsch Algorithm. This dynamic programming algorithm

involves a sequential alignment of larger and larger subsequences, until

the entirety of both sequences has been aligned (Fig 1).

First, a penalty is assigned for mismatches and gaps in sequences. This

can be further developed to have context-specific penalties. A matrix is

constructed with each of the two sequences on different axes. The first

column and row is filled with gap penalties. Every remaining cell is filled

by considering the alignment of the previous step and then choosing the

option (gap in sequence A, gap in sequence B, match or mismatch), which

gives the lowest overall penalty. This matrix is iteratively filled. The most

optimal path is reconstructed from the bottom right corner of the matrix

by tracing the path that leads to the ultimate penalty score. This

algorithm is currently implemented in serial, however a parallel version

would be useful for multiple sequence alignment. Additional algorithms

should be implemented for different types of alignments (ex. Extremely

divergent or similar).

Fig 1. Schematic of Needleman-Wunsch Algorithm. Taken from etutorials.org

Julia Genomics Package | Applied Parallel Computing (18.337) | Isha Jain

9

3. Co-expression Analysis
Microarrays can be used to profile gene expression in a given tissue or

sample type. Microarray datasets are now available for a plethora of

different experimental conditions. Such data can be used to determine

novel genes in a given pathway, organelle, etc. Genes that are

functionally related tend to be co-expressed across different

experimental conditions.

The Julia genomics package contains a co-expression analysis function.

For each gene, a ranked list is created of genes which are co-expressed

through different conditions. A gene list is created corresponding to the

biological function of interest. The intersection of top-correlating genes

and the comparison gene list is determined for each gene. The genes

with the largest number of neighbors, or genes in the intersection are

likely to be related to the original function being probed. This can be used

as the basis for experimental confirmation of a novel gene’s function.

Such approaches have previously been used to determine organelle

proteomes, functional pathways, etc.

Future Work
 The current genomics library provides examples of computational functions that are

needed for a wide-range of applications of different experimental and computational scales.

The advanced toolbox can be expanded to include a larger variety of data analyses. For

example, it would be useful to have functions to analyze mass spectrometry data, construct

evolutionary trees, create gene expression networks/graphs, etc. Furthermore, the functions in

the daily-use and intermediate toolboxes can be optimized by trying several different

algorithms and testing them on larger sequences.

 In order to make this even more user-friendly, a user interface could be written to allow

ease of access.

Conclusion
 The biological sciences are generating an ever-expanding need for computational tools

and scientists. As this transformation is in its infancy, solutions to such problems are rather ad-

hoc and disorganized. Currently, biologists use an amalgam of websites and software to

perform computations related to their work. This leads to a lack of standardization and

efficiency. This Julia Genomics Package is an attempt to provide a universal, easy-to-use toolset

for computational (and increasingly for experimental) biology. Further expansion and

Julia Genomics Package | Applied Parallel Computing (18.337) | Isha Jain

10

refinement of this library has the potential to attract many users from the biological and

genomic sciences.

Acknowledgements
Thank you to Jeff and Prof. Edelman for teaching such a useful and informative class. It was a

pleasure being a part of it.

